Definitions | s = t, t T, x:A B(x), x:A. B(x), ES, EState(T), a:A fp B(a), f(a), Id, , strong-subtype(A;B), P  Q, Type, EqDecider(T), Unit, left + right, IdLnk, x:A B(x), EOrderAxioms(E; pred?; info), kindcase(k; a.f(a); l,t.g(l;t) ), Knd, loc(e), kind(e), Msg(M), type List, , val-axiom(E;V;M;info;pred?;init;Trans;Choose;Send;val;time), r s, e < e', , b, constant_function(f;A;B), SWellFounded(R(x;y)), , pred!(e;e'),  x,y. t(x;y), !Void(), x:A.B(x), Top, S T, suptype(S; T), first(e), A, <a, b>, pred(e), x.A(x),  x. t(x), P & Q, E, AbsInterface(A), e  X, {x:A| B(x)} , E(X), sys-antecedent(es;Sys), e c e', let x,y = A in B(x;y), t.1, chain-consistent(f;chain), x:A. B(x), P Q, a < b, hd(l), L1 L2, e loc e' , adjacent(T;L;x;y), (x l), no_repeats(T;l), effective(e), y is f*(x), X(e), case b of inl(x) => s(x) | inr(y) => t(y), if b then t else f fi , loc(e), Atom$n, x << y, x before y l, False, f**(e), A c B, l[i], {T}, (e <loc e'), source(l), destination(l), es-init(es;e), P  Q, P   Q, isrcv(e), kind(e), es-first-from(es;e;l;tg), isrcv(k), lastchange(x;e), (last change to x before e), last(L), {i..j }, x dom(f), ||as||, #$n, y=f*(x) via L, SQType(T), s ~ t, ff, inr x , tt, inl x , True, T, Dec(P), b | a, a ~ b, a b, a <p b, a < b, x f y, x L. P(x), ( x L.P(x)), r < s, q-rel(r;x), Outcome, l_disjoint(T;l1;l2), (e < e'), e<e'.P(e), e e'.P(e), e<e'. P(e), e e'.P(e), e [e1,e2).P(e), e [e1,e2).P(e), e [e1,e2].P(e), e [e1,e2].P(e), e (e1,e2].P(e), SqStable(P), a =!x:T. Q(x), InvFuns(A;B;f;g), Inj(A;B;f), IsEqFun(T;eq), Refl(T;x,y.E(x;y)), Sym(T;x,y.E(x;y)), Trans(T;x,y.E(x;y)), AntiSym(T;x,y.R(x;y)), Connex(T;x,y.R(x;y)), CoPrime(a,b), Ident(T;op;id), Assoc(T;op), Comm(T;op), Inverse(T;op;id;inv), BiLinear(T;pl;tm), IsBilinear(A;B;C;+a;+b;+c;f), IsAction(A;x;e;S;f), Dist1op2opLR(A;1op;2op), fun_thru_1op(A;B;opa;opb;f), FunThru2op(A;B;opa;opb;f), Cancel(T;S;op), monot(T;x,y.R(x;y);f), IsMonoid(T;op;id), IsGroup(T;op;id;inv), IsMonHom{M1,M2}(f), a b, IsIntegDom(r), IsPrimeIdeal(R;P), f g, e (e1,e2].P(e), @e(x v), pred(e) |